
. mvmam "■ ^ -r^fw^mt ^'-■J-r.,wiw^.^.mf. ^W•W,l,-■,.ll!■ 

AD-785  171 

TOTAL  COMPLEXITY   AND  THE 
INFERENCE  OF   BEST  PROGRAMS 

J.   A.   Feldman,   et al 

Stanford University 

Prepared for: 

Advanced Research Projects Agency 
National Science Foundation 

April  1972 

DiSfRIBUTED BY: 

mn 
Technical Informition Service 

U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 



STANFORD ARTIFICIAL INTELLIGENCE PROJECT 
MEMOAIM-159 

STAN-CS-253-72 ^h\ 

f*i ( 
^ (TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS 

00 
BY 

J. A. FELDMAN 
P. C. SHIELDS 

SUPPORTED BY 

NATIONAL SCIENCE FOUNDATION 

AND 

ADVANCED RESEARCH PROJECTS AGENCY 

ARPA ORDER NO. 459 

APRIL 1972 

COMPUTER  SCIENCE  DEPARTMENT 

School of Humanities and Sciences 

STANFORD UNIVERSITY 

m 

D D C 

SEP  1&  1S74 

Reproduced by 

NATIONAL TECHNICAL 
INFORMATION  SERVICE 
U S Department of Commerce 

Springfield  VA 2?151 

Approved for pMe MI^H 

.Du*rtb"tion Uniü«tod 



STANFORD ARTIFICIAL INTELLIGENCE PROJECT 
MEMO AIM-159 

COMPUTER SCIENCE DEPARTMENT 
REPORT CS-253 

APRIL 1972 

TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS 

by 

J. A. Feldman and P. C. Shields 

ABSTRACT: Axioms for a total complexity measure for abstract programs 
are presented. Essentially, they require that total complexity 
be an unbounded increasing function of the Blum time and size 
measures. Algorithms for finding the best program on a finite 
domain are presented, and their limiting behaviour for 
infinite domains described. For total complexity, there are 
important senses in which a machine can find the best program 
for a large class of functions. 

This research was supported in part by the National Science Foundation 
and the Advanced Research Projects Agency. 

The views and   conclusions contained in this document are those of the 
author and should not be interpreted as necessarily representing the official 
policies, either expressed or implied, of the Advanced Research Projects 
Agency or the National Science Foundation. 

Reproduced in the USA. Available from the National Technical Informa- 
tion Service, Springfield, Virginia 22151. - "rtm  F€ 

// 



We axe primarily concerned, in this paper, with the question of 

when a machine can learn a program from samples of its input-output 

pairs. This problem of program inference is closely related to the 

problem of grammatical inference, which has received a fair amount of 

consideration [ 2 ]. There are, in the grammatical inference literature, 

many results and discussions which can be carried over to program 

inference. This paper arose out of an attempt to carry out what we 

believed to be a trivial reworking of some of the results of [ 7] 

for programs. In fact, the results on programs turn out to be significant- 

ly different; we will discus.« this issu? further below. 

We are interested in modelling the following situation. A 

machine M receives at each time t , an input-output pair (x,y) 

from an unknown program P in a known class (3 of programs. At 

each time, the machine is to guess some P.63 as the best prc^ram 

for the finite number of input-output pairs seen so far. v\. show that 

there are reasonable conditions under which M can guess the best 

program at each finite time and also have good behaviour in the limit. 

To do this, we need a formal notion of "best" program. 

The key to our development is the combined complexity measure 

including both program size and running time. Many of the difficulties 

arising in other axiomatic treatments of complexity are elided in the 

combined complexity approach. 

More formally, our lesults will be formulated for programs. A 

program can be taken to be any formal computational scheme for 

evaluating a recursive function , such as a Turing machine descrip- 

tion. To simplify the discussion it is assumed that the  input and 

output of a program are both positive integers.  The graph J'(P) 



of a program P is the set of all pairs (x,y) such that P is 

defined for x and the output of P given the input x is y . 

A sample S of a program P is a finite nonempty subset of Jf(P) - 

The class C    denotes a class of programr which can be effectively 

enumerated by an admissible [17] enumeration, such as the class of all 

Turing machines, the class of FORTRAN programs, or the class of loop 

programs [19]. An inference machine M = M, is any formal effective 

procedure for inferring programs from finite samples, that is, M 

is defined on the set of samples {S} of programs in C   and M(S) 

is a program in   fl .   We will always require that S is a sample of 

M(s) , that is 

(1) ^(M(S))3S 

Various complexity measures have been discussed, in particular 

program running time and program size (see [12] for a discussion of 

recent results). We wish to discuss measures of program complexity 

which take into account both the size and running time of programs. 

The simplest such measure is the product of size and running time. 

Other measures are also useful. In order to obtain general results 

we shall describe a complexity measure as any function satisfying a 

simple set of axioms. The axioms for size and running time are the 

same as those discussed in [12]> while the axioms for a combined 

complexity measure are equivalent to those in [ 7 ] • 

First we assume that the program size or length L = L 

satisfies the conditions 

(2) There is an effective admissible enumeration {P ) such 

such that 



(a) r(n) - L(Pn) is a recursive positive integer valued 

total function 

(b) For each n , the set Kn - H r(m) . „) is finite 

(c) The function ?(n) - cardinality of Kn is a recursive 

function. 

m  running ti.e T(x,y,P) is a positive effect:Lvely ^^ 

rational action and is defined if and only if (x,y) is in the 

graph of P . aere is a r!lated recursive fujnction 

d(x,y,P,m) (0 ^ T(x,y,P) <m/ 

1 otherwise     I 

We also assume that the co.bined running ti^e T(s,P) is of the for. 

W     TCS,P)=V(U    {T(x,y,P))) 
(x,y)€S 

where cp is a recursive function. The related function 

DCs^m) = \o if T(S,P) <^ 

/1 otherwise 

is then recursive. 

Let c ba . positive recursive rational valued function of two non- 

ne8ative rational tables „bich is increasing and unbounded in eaob 

variable. Ihe coaplexity measure 0 = q, is then given by 

C(S,P) - c(L(P),T(S,P)) , Sc*(P) 

SMi« The size L(P) might be the number of symbols used to write 

the program in some alphabet or the number of symtols on the tape of 

a universal Turing machine needed to describe a adulation of the 



program. Some plausible L(P) are excluded because of the require- 

ment that there be only a finite number of programs of each size. 

For example, the number of statements in a FORTRAN program or the 

nesting depth of loop programs would not, as normally defined, 

satisfy (2b). size measures which take structure into account are 

discussed in [ 2, 6 ] for grammars. 

For a given pair (x,y) the running time T(x,y,P)   could be 

the time the program P uses to derive output y from input x 

(possibly also including the time for reading x and printing y). 

Other possibilities are the numoer of moves or number of tape cells 

scanned by a Turing machine, the number of instructions executed by 

the program. One can also normalize by some function of x and y , 

for example, T(x,y,P)   Could be actual running time divided by 

xy . 

The general function T(s,P) can be obtained from T(x,y,P) 

in many ways, for example we could take T(s,P) as 

roax    T(x,y,P)  , or S       T(x,y,P) 
(x.y)€S (x,y)€S 

or as an average of T(x,y,P) , (x,y)€S . 

The possibilities for the function c(L,T) are very large, for 

example each of the following satisfy the hypotheses for c : 

(L+1)(T+1) , L+T ,  (L+1)(T+1) 

Notice that the simple product LT doesn't satisfy the hypotheses for 

it is not unbounded in L when T=0 . We impose this requirement so 

as to simplify some later arguments. The very general nature of the 

function c precludes the possibility that all complexity measures are 



.-.■--. ,.~-.^-,:-:-r^^ ■_.,,,.,    m 

recursively related, a result wh^.ch is true boch for the length 

L(P) and tljne T(x,y,P)  . (See [12]) 

Remark 1 

Although the results below are quite general, some care must be 

used in applying them to actual inference situations. A major considera- 

tion is to choose measures which do not degenerate into strictly time 

or strictly size in the limit. For exanrple, S       T(x,y,P) 

(x,y)€S 

may be unbounded is S gets large or the average of (time/length) 

may go to zero with large S . Depending on the choice of 

c(L(P), T(S,P)) either situation could lead to degeneracy. One 

must also choose complexity functions which reflect the intuitive 

meaning of the problem. 

Our later proofs make use of the fact that the programs can be 

ordered in terms of increasing size. An Occam's enumeration of Q> 

relative to 1^ is an admissible enumeration ff ) satisfying 

W Ufy <L(F.)    if i < j .  • 

It is obviou. from (2)(b), (c) that a machine can find an Occam's 

enumeration relative to L . One consequence of this is the following 

simple result: 

Lemmas Given a complexity measure C = c(L,T) on the infinite class 

any a    and an Occam's enumeration of Q,   relative to L then for 

sample S of some P € e , there is an index k such that if 

J > k then either 

5 



(5)(a)   CCS,?,,) >C(S,P) 

or 

rd- 

(b)   S is not a sample of P. . 

P£oof This is a consequence of the assumption that c is increasing 

and unbounded in each variable. We merely choose k as the first 

index for which 

c(L(Pk), 0) >CCS,P) 

If J > k and S is a sample of P  then (k)  guarantees that 

L(P..) >L(Pk) 

and hence 

0(3^) = cCKPj), TiS^) 

> catPj), o) >c(s,p) 

This proves the lemma. 

Now we prove the following general theorem. 

Theorem 1 Given a complexity measure C(S,P) on a class £ there 

is an inference machine M - % which infers programs of minimum 

complexity, that is, if S is a sample of some program in (j , 

then S is a sample of M(s) and for all P63 for which S is a 

sample of (p) 

(6) C(S,M(S)) <C(S,P) 



Proof The intuitive idea for the proof is as follows: Run P , P, ... P 
1  I.    t 

on S for time t , successively incrementing t until some P. , i < t 

runs successfully in time t . Then one need look v.t  no programs 

whose total complexity exceeds C(Pi,S) , hence one need examine orüy 

a finite set of programs (cf. Lemma l) and pick the beM one. 

To formally construct M we first assume an Occam's enumeration 

for 0, relative to length L . Then 

steP 1 Calculate D(S,Pi,t) , 1 < i < t . If D(S,Pi,t)=l for 

1 < i < t , increment t by 1 and repeat Step 1. Otherwise let 

t0 be the first t for which D(S,Pi,t)=0 for some 1 < i < t 

and let    i0 be the first i , 1 < i < t0 for which D(S,Pi,t0)=0 

and proceed to Step 2. 

Ste2_2 Use Lemma 1 to calculate k so that if j > k and S is a 

sample of P. then 

C(S,P ) >C(S,P, ) 
J     :Lo 

steP 3 Conipute the first integer m > t  such that 

C(S,P ) < c(0,m) 
0 

StgEj. I.at G(S) denote the set of those j, 1 < J < k for 

DCs.P^m)^ 

which 

Step 5    Compute ${&,?,)  ,  J 6 G(S) 



Ste£_6   Let    4^   be the first    i € G(s)    such that 

C(S,Pi) =min  fO(i,?J  |  j € G(S)} 

and put   M(S) = P. 
h 

Let us show that M(s) has the desired properties. M need 

choose no program with complexity greater than C(S,P. ) . Step 2 
1o 

rules out programs which are too long while Step 3 rules out programs 

which take too long to run on S , hence if j ^ G(S) then either 

S is not a sample of P  or C(S,P ) > C(S,P. ) so (6) holds for 

M(S) . This proves the Theorem. 

The machine M constructed in the proof of Theorem 1 will in 

certain cases have reasonable convergence properties as the sample 

size increases. An information sequence j(P) is a sequence whose 

range is ir(p) . An initial segment S  is the sample 

Sn = OKP). I 1 < i < n) 

Given an information sequence J(p) , PRJ- , the machine M will 

eventually be correct on any input for which P is defined, that is 

(7)     If (x,y)€*(?), then there is an N such that (xfy)i|f(M(i )) 

for n > N . 

This follows easily from the fact that Sc^ (M(s)) and that (x,y)6S 

for large enough n . 

It may not be possible to obtain #(P) c ir(M(S )) for n 

large. If f is a recursive total function then it may happen that 

any program for f has such rapidly growing running time that M(S ) 

will be merely a table for Sn . In other words, if the running times 

8 
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for programs for f are all unbounded then size becomes irrelevant 

in the complexity measure. If the running time is bounded then the 

machine of Theorem 1 will eventually pick only programs which agree 

with f wherever f is defined. 

Theorem 2 Suppose J(I>)    is an information sequence for some program 

P63 and that C(Sn,P) is bounded as i»» . Then for the machine 

M of Theorem 1, we will have 

i'(M(Sn)) 3 Jr(P) for n large enough. 

Proof Let i0 denote the first index i for which ir(p. ^^(p) 

and C(Sn, Pi)  is bounded as IH» . Pit b = lub C(S , P. ) and 

choose K so that 

C(L(PK),0) > b 

The programs Pk for k > K will never be M(Sn) for their complexity 

must be larger than that of P   on S . Furthermore if k < K 
i0     n 

and i.(Pk) ^i<(P) , we can choose a. so that S   will not be a 

sample of i,(Pk) . Thus if n is large enough, M(S ) must be one 

of the programs P. for which i < K and ^(P.) ^(P) , This proves 

the theorem. 

Notice that if P is total, M(s) will eventually be only P 

such that #(|^) =ir(p) . This behaviour is called matching in the 

literature on grammatical inference f 7]. 



Corollary Suppose that for all information sequences .$(?) of a 

given P g C , the limit 

Y(P) = lim C(S ,P) Y\ /   n  
v n' 

exists for all P such that #(?) ^^(P) . Let y    be the minimum of 

these Y(P) • Then for n svifficiently large, yiU{t&) =r • 

Proof As the proof of Theorem 2 indicates, there is a K such that 

for all n , M(S ) is one of the programs f«t !> < i < k i and for 

n large enough 

l(M(Sn))3^(P) 

Suppose i < K and ir^) Di'(P) , yC^) = Y • If J < K , 

ir(P.)3^(P) and Y(P-) >Y then for n large enough 

0'iai Pj) > (YCPJ) +Y)/2 

so M(S ) will not be P. . This proves the Corollary. 
n j 

Theorem 2 can be applied in any case where the program has 

bounded running times. A slight modification enables one to use this 

result in the case when a bounding function for the running time is 

known. To simplify our discussion w? shall assume that 

(8)     T(S,P) = max   T(x,y,P) . 
(x,y)€S 

We could extend our results (Theorem 3) to more general cp , but the 

extensions do not seem to warrant the additional complexity of proof. 

We continue to search the right generalization of Theorem 3. A 

recursive total function b of two variables, which is increasing 

in both is called a bounding function. The running time of P € C 

10 
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is bounded by b if there is an * > 0 such that 

T(x,y, P) <a.b(x,y) ,  (x,y) € ^(p) 

We will call the least such t the bounding constant of P . A 

bounding function gives rise to a new running ti*e Tb defined for 

(x,y) € M)   by 

Tb(x,y, P) = T(x,y, P)/b(x,y) 

aad for ö c Jr(p) by 

Tb(S,P) = max        T (x,y, P) 
(x,y)6S " 

This in turn gives rise to the complexity measure C, defined by 

Cb(S,P) = c(L(P), Tb(S,P)) 

aus if samples S are drawn from a program P which is known 

to have its times bounded by a bounding function b , then one can 

choose programs M^S) of minimal C, complexity and w that 

J'(Mb(s))D^(P) 

if the sample S is large enough. 

iHUt aero arc a number of classes of computations with known 

bounding functions in terms of various types of programs or machines 

[13]. The complexity measure Cb will be more sensitive if the 

bounding function chosen is a tight one  Thn«, l# «. h ox^iio one.  inus, if we know a computa- 

tlon has polynomial bounds we should try to find the partloular 

polynomial rather than Just choose some h that gro„s faster than any 

polynomial. A hounding action that is too large may give rise to 

degenerate measures, of Remark 1. 

11 



It »y even be posslble to infer a Soc. bo^ng function as 

Part of m, general procedure for progra. inference, „ere „e describe 

one «tbod for doing this. Suppose (b][) is a s^uence of bounding 

actions satiating ^ . J . Vx>y) £ ^^ ^ 

«a wiU no. show ho« to infer both a bounding function and then good 

Programs which run on the ssMple in that bound. 

aSaSi ««* Ö *• a class ^ co^lexity Measure c (where 

T(S,P) is given by (8)) and let f^ he a sequence of bounding 

functions (satisfying (Q)) rh^ya  «. 
y "g W/. There is an inference machine M which 

-ill, for any information sequence #(?) , p € e ) ^^ both % 

sequence of positive iMMara  ri7 i 
Live integer ^J and programs M(Sn) suchthat 

(a) M(Sn) is a program in c   of least c,.  complexity 
k 

whose graph contains S . n 

If, furthermore, there is some ^rj f   smb tiat   Mp) c ^ ^ 

P has its inning ti.es bounded by soae b, . then for n Urge enougn 

(b) kn = k , a constant 

(c) MM{Sn))^j,(p) 

££221 Let fP.) be an 0ccamfs enumeration for ^ ^^.^ ^ L ^ 

M will use a sequence fag , ^ being the current ^^ ^ ^^ * 

bounding constant. Initially „ ='   m* ***** 
*  *lm I *    The machine proceeds as 

follows to obtain k and M(s  ) 
n     v n' ' 

12 



Step 1    For each    i , 1 < i < n    and   k , l<k<n5M    computes 

(10) 6t(i,k)=max d(x,y,P, ,a K (x,y)) 
(x,y)6Sn 

If 6 (i,k) =1 for l<i,k<n then M sets lL« 1 and goes 

to Step 3. Otherwise M goes to Step 2 . 

Step 2 M selects k  as the first index k such that 6,(i,k) = 0 
* n n 

for some i < k . M then selects i  as the first index such that 
— n 

6 (i,k ) = 0 . M then selects k  as the least integer such that 
nv ' n' n 

6 (i ,k ) = 0 and goes to Step 3 . 
nv n' n 

Step 3    If   6   (i,k) = 0    for some    i    and   k    l<i<n,l<k<n 

and if i = i  for some m < n then M sets o' , = or,, . Other- 
n   m n+1   n 

wise M sets a   ,-,  = 1 + a„ . n+1      n 

Step k    M selects M(S ) as the best program using the algorithm of 

Theorem 1 with the measure C, 
bk 

n 

Let us now show that (a),(b),(c) hold. Condition (a) follows 

directly from that fact that Step h  uses the algorithm of Theorem 1 . 

Consider the set f of pairs (i,k) such that bk bounds the 

running time of P. and MK) ^M?)  •    We will show that if ^ 

is not empty then (b), (c) hold. Towards this end let (I,!) be 

the pair in /f which minimize the maximum of i and k for 

(i,k)6^ . (In case of ties we choose the one which comes first in 

the lexicographic ordering of pairs). 

13 



We let yh    be tbe least constant such that 

dU,y,r4,a* b^(x,y)) =0 , for all (x,y) 6 KP) 

and consider two cases 

Case 1 Ihe machine M makes at least ah    different guesses of i . 

In this case for n large we always have 6 (I,K) = 0 . If 

i is not i it is because there is an (i,k) pair found first. In 

particular we have i < k < max (I,K) so that a     must be eventually 

constant. By our choice of (I,K) any pair (i,k) of lower max{i,k) 

will eventually be rejected because ^(P.) doesn't contain i^P) 

or because 6 (i,k) = 1 for all k such that max(i,k} < max{*,K) . 

ITius in Case 1, i  will eventually be i and k  will eventually 

be ft . 

Case 2 The machine M makes a  different guesses of i  and 
^—— n 

a <ak  . 

In this case we consider the class if of pairs (i,k) with the 

following properties 

i) ^(Pi)3^(P) 

ii) d^y,?.,* bk(xJy) = 0 , for all (x,y)€*(P) 

If J^ were empty M would make more than a    guesses. It is easy 

that if n is large enough we will have i = T and k = 'ic where 

Ci,Tc) = min   max(i,k) 

where ties are again broken by taking the least number in the lexicographic 

order. This completes the proof of Theorem 3 . 

Ik 



One might think that Theorem 3 can be formulated so that M 

can actually infer the least integer k such that some program whose 

graph contains ^(P) has its running time bounded by bk . We 

suspect that this cannot in general be done. 

Example Suppose f_, f  are recursive functions such that there are 

programs P(f,), p(fp) which compute each argument in time b^^ and b, 

respectively, and that no program does better for infinitely many 

arguments. Let 

f (k) , n = 2k-] 
tin) = 

f2(k) , n = 2k 

and consider the sequence of programs P   such that 

p*' uses P(f, ) to compute for n odd, is undefined for 

n = 2k , k > i , and computes f(2k) , k < i by a table. 

Thus the program length L(P^10 will be unbounded, yet the running 

time of P^ will be bounded by b, . If an inference scheme considers 

only a bounded number of programs one may be able to infer that f 

can be computed in b  time for some k > 2 . If, however, the 

scheme considers more and more programs, one eventually encounters 

the P^1' which would cause the erroneous guess of time bound b1 . 

We have not been able to convert examples of this sort into a 

proof that no machine can always find the lowest k for which there 

is a P. with ir(P) c ir(P,) and T(S , P.) < b (S ) . However, we do 
j —   j n  j    K n 

know that any machine that attemps to always find the lowest possible 

k will have to look at arbitrarily many P. for some functions. 

This can be forced by taking some function of class k and replacing 

15 



it on a finite number of arguments with a function of class k+1 . 

This suggests the following modification to Theorem 3. 

We supply the machine M with an auxiliary function A(£,k) 

which maps a size and a bounding index into a size. This tradeoff 

function A(jK,k) determines the size of program to be considered in 

searching for an improvement to an answer P. of size i    and complex- 

ity index k . Intuitively, AU,k) says that the user of the inference 

machine M prefers a program of class k-1 and size AU,k) to a 

program of size i    and class k . 

There is a "natural" A function derived from the complexity 

function, namely 

AU,k) = first size m such that 

c(£,T (S,P)) > c(m,0) . 
k 

The construction for Theorem 3 can easily be modified to include 

A(jJ,k) . This still does not guarantee the minimum value for k , 

but seems to be a natural model of inference processes. 

Remark 3 There has been a considerable amount of work [12] on 

complexity classes of functions. To remain consistent with this work, 

we would have to restrict the choice of cp(U {T(x,y,P)})    to ones 

which give the same complex! y classes as cp = ,!?ax - N(Tb(x,y,P.) . 

A good choice would be 

T (S,P.) =inax   T (x,y,P ) + 1 E     T (x,y,P ) . 
b  J   (x,y)6S b    J   Tsf (x,y)€S b    J 

This (max + average) measure gives the s?me classes as max, and also 

distinguishes among programs with the same maximum time. Since the ratio 

of this measure with the max measure is bounded away from 0 and oo , 
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Theorem 3 holds for it also. Furthertore, it is also bounded away from 

zero, avoiding the degeneracy problem for the usual choices of C(L,T) . 

The results derived here for programs have a significantly 

different flavor from those developed [7 ] for grammars. A central 

issue in grammatical inference is the presence or absence of negative 

information, i.e., strings in a sample marked as not belonging to the 

language being learned. This problem does not arise in program inference 

for two reasons. With grammars, an answer which generates too many 

strings is normally considered wrong, but our constructions allowing 

answers whose graph includes that of the hidden function seem quite 

natural. This arises from the single-valuedness of functions - 

if (x,y) appears in a sample then no (x,y') with y { y' can 

appear. When 1(M(S)) 3 ^(P) , M has simply chosen a program which 

may be defined for some arguments where P is not. If one attempted 

to extend our results to relations, the problems associated with negative 

information would reappear. 

The results of this paper should be viewed in the context of a 

renewed interest in inductive and scientific (hypothetico-deductive) 

inference. In addition to the theoretical work on programs and grammars, 

there is work on predicate calculus [16] and real chemistry [51. 

All of these efforts have applied as well as theoretical components. 

Some of our work on program inference is discussed in [ 8] and [ 1 ] 

and there is a fairly ambitious effort underway to infer loop programs 

from sample traces. Thus far, there has been surprisingly little 

carryover from one domain to the other and from theoretical results 

to programs, but a common understanding of the issues seems to be 

IT 



emerging. There are also  proposed applications of inference techniques 

to pattern recognition [ 9] and natural language description [1^] 

which provide constant reminders of the weakness of existing results. 
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